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Abstract

DJTE is a deterministic, join-triggered token distribution mechanism designed for DSM: a
system that forbids consensus, forbids wall-clock dependence, and treats storage nodes as dumb
mirrors. Emission eligibility is unlocked when a device proves it has met the DSM spend-gate
(e.g., paid the required set of storage replicas for genesis storage), producing a Join Activation
Proof (JAP). DJTE deterministically converts a sequence of activation events into emission
events, selecting emission recipients uniformly at random over the global set of activated identi-
ties while operating on sharded data structures and without requiring any global roster enumer-
ation. This paper specifies DJTE as a proof-carrying protocol: eligibility, sampling, non-reuse,
supply caps, and fork convergence are all enforced by verifiable commitments (Sparse Merkle
Trees and append-only accumulators). We formalize and prove (i) determinism, (ii) single-use
activation consumption, (iii) shard sampling equivalence to full global uniform sampling, (iv)
strict supply upper bounds, and (v) deterministic fork-choice convergence once the same tran-
sition set is observed. We also prove that shard selection requires Ω(b) bits of information
to choose among 2b shards, making the protocol’s O(b) shard-descent proof cost information-
theoretically minimal; attempted replacements using random-walk selection introduce bias and
destroy proof-carrying equivalence guarantees.

Finally, we extend DJTE with (a) a deterministic prepaid transaction credit bundle mecha-
nism (“sender-pays credits”) that provides economic rate limiting without time, and (b) DSM-
native contact-gated inbox processing and precommitment constraints that dramatically reduce
the attack surface for meaningful spam in the first place. We contrast this with blockchain-style
systems where global mempools, consensus, and time/fee markets create broad spam externali-
ties and griefing vectors. The resulting system is proof-carrying, deterministic, and structurally
hostile to meaningless flooding: in DSM, most arbitrary data cannot even be represented as
a valid state-advancing object, and victims can remain online while refusing to process hostile
relationships.
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1 System Model and Goals

1.1 DSM constraints (hard requirements)

DJTE is built for DSM-style operation:

• No consensus and no leader. Devices verify. Storage nodes store/relay/reject malformed
objects. No signatures are required from storage nodes.

• No wall-clock time. No timestamps. All state is advanced by deterministic transitions and
indices.

• Proof-carrying objects. Any verifier can check validity offline from commitments and proofs.

• Strict-fail verification. Any missing proof or mismatch is invalid; no “best effort” acceptance.

1.2 Participants, responsibilities, and what users do not do

DJTE is intentionally designed so that end users do not participate in network coordination.
The only “actors” are:

• End-user devices (DSM clients). Devices create/hold identities, produce and verify proof-
carrying objects, and maintain local deterministic state. Users approve actions in the wallet UI
but do not manage shards, select winners, run ordering protocols, or perform manual cryptog-
raphy.

• Storage nodes (dumb mirrors). Storage nodes store and relay objects (by content address)
and may reject malformed protobuf objects. They do not vote, order, sign, or decide validity
beyond basic structural checks. They are not trusted for correctness.

• Policy anchors (CPTA/DLV references). These are content-addressed immutable policy
objects referenced by devices during verification. They are not authorities; they are immutable
inputs.

Thus, from a user perspective, DJTE “just happens” as part of the wallet’s normal operation:
unlock spend-gate, receive receipts in the b0x (inbox) when online, and see balances/history updated
by verified state transitions. Users do not run committees, do not watch global mempools, and do
not perform any manual shard work.

1.3 Problem

We want a deterministic system that:

1. Emits tokens only after a device unlocks the spend-gate, producing a Join Activation Proof
(JAP).

2. Selects emission recipients uniformly over all activated identities (global uniformity), yet stores
data in shards (no global roster scanning).

3. Prevents double-use of Join Activation Proofs (one proof consumes at most one emission tran-
sition).

4. Enforces a fixed total supply cap (e.g., 80 · 109 units) with a halving-style schedule.
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5. Converges deterministically across forks (devices may observe different transition orders, but
converge once they see the same set).

6. Provides robust resistance to meaningless spam by combining precommitment validation, contact
gating, strict-fail verification, and optional economic credits — all without time, consensus, or
trusted throttles.

1.4 Threat model and security objectives

DJTE assumes:

• Attackers can run arbitrary storage nodes and can withhold/relay objects selectively.

• Attackers can generate many identities if the spend-gate cost is low (Sybil attempts).

• Attackers can attempt to bias recipient selection by manipulating inputs (e.g., crafting identities
to target shards).

• Attackers can attempt resource exhaustion by flooding storage nodes or devices with malformed
data.

• Attackers may attempt valid high-volume traffic if they can afford it.

DJTE must guarantee:

• Determinism: Given the same committed state and the same consumed activation, all verifiers
compute the same winner.

• Proof-carrying validity: All acceptance is local and offline-verifiable from proofs.

• Global uniformity over eligible identities: Each activated identity has equal chance per
emission event.

• Non-reuse of activations: A JAP cannot be consumed twice in valid emissions.

• Supply cap: Distributed amount never exceeds the source DLV allocation.

• Attack-surface minimality: meaningfully “spamming the network” is structurally difficult
because most arbitrary objects fail precommitment and contact-gating constraints before they
reach costly verification stages.

Sybil resistance is delegated to DSM’s spend-gate: DJTE remains mechanically correct even under
Sybil behavior, but the social meaning of fairness depends on the spend-gate preventing cheap
identity grinding.

1.5 Bigger picture positioning

DJTE is an instance of a broader distributed-systems trend: proof-carrying data structures
replacing “ask the network” semantics. DSM pushes this to an extreme: correctness lives in objects
and their proofs, not in agreement processes. The constraints (no time, no consensus, dumb mirrors)
are strict, but the payoff is equally strict: offline verifiability, deterministic convergence under shared
view, and sharply reduced global spam externalities.
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2 Preliminaries

2.1 Byte strings and hash

All identifiers are byte strings. Let H(·) be a cryptographic hash (DSM standard: BLAKE3).
Concatenation is denoted ∥. Domain separation labels are fixed byte prefixes (e.g., "DJTE.SEED").

2.2 Sparse Merkle Tree (SMT)

An SMT maps fixed-length keys to values and supports:

• Membership proof: key 7→ value present.

• Non-membership proof: key absent (or mapped to default) under a committed root.

2.3 Append-only accumulator

We require an append-only structure supporting:

• Commitment root to an ordered sequence of leaves L[0..n− 1].

• Inclusion proof that leaf L[i] is at index i under the root.

An MMR (Merkle Mountain Range) or append-only Merkle tree qualifies. We abstract it as ACC.

2.4 Deterministic exact-uniform sampling over a range

Given a 256-bit value R and range size N > 0, define rejection sampling:

UniformIndex(R,N) : let limit =

⌊
2256

N

⌋
·N.

If R ≥ limit, set R ← H("DJTE.RESEED"∥R) and retry. Output R mod N . This yields an exactly
uniform integer in {0, . . . , N − 1}.

2.5 Deterministic “no-op” invalidity

DSM treats meaningless operations as structurally invalid. We will use:

Definition 1 (State-advancing transition). A transition is state-advancing if it (i) is authored by
the sender identity, and (ii) strictly advances the sender’s straight hash chain tip (no duplicates,
no replays, no zero-effect updates).

This is the formal basis for “you can’t send zero” and “random bytes do not count as a trans-
action.”

3 Core Objects

3.1 Identity and shard assignment

Definition 2 (IdentityID). An IdentityID is a fixed-length byte string representing a DSM identity
(e.g., hash of genesis anchor).

Definition 3 (Shard function). Fix a shard depth b ≥ 1. Define:

Shard(id) = prefixb
(
H("DJTE.SHARD"∥id)

)
∈ {0, 1}b.

This partitions identities into 2b shards.
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3.2 Join Activation Proof (JAP)

Definition 4 (Join Activation Proof). A JAP is a proof-carrying object produced by a device when
it unlocks the spend-gate. It commits to:

• id: the IdentityID being activated,

• gate: evidence that required replica payments were satisfied,

• nonce: a deterministic per-activation discriminator (e.g., derived from the identity’s straight
chain tip),

and yields a unique digest:

jap hash = H("DJTE.JAP"∥id∥gate∥nonce).

3.3 Source DLV State (the emission source vault)

All tokens already exist under a CPTA policy and are revealed/distributed deterministically from
a locked source DLV.

Definition 5 (Source DLV State). The source DLV state at emission index e is:

De =
(
dlv tip, spent roote, count roote, {acc roote,s}s∈{0,1}b , remaininge, e

)
where:

• spent roote is the root of SpentProofSMT (consumed JAPs),

• count roote is the root of ShardCountSMT (counts per shard and aggregated subtree sums),

• acc roote,s is the commitment root of Shard Activation Accumulator for shard s,

• remaininge is remaining undistributed supply under this DLV.

3.4 Shard Activation Accumulator (SAA)

Definition 6 (SAA). For each shard s, maintain an append-only accumulator ACC whose leaves
are activated identities:

SAAs : Ls[i] = H("DJTE.ACTIVE"∥idi).
The accumulator provides acc roote,s and inclusion proofs of (i, Ls[i]).

3.5 ShardCountSMT: proof-carrying global counts

Definition 7 (ShardCountSMT). Define a complete binary tree over shard prefixes up to depth b.
Each node corresponds to a prefix p of length k ≤ b and stores:

count(p) =
∑

s extends p

|Ls|.

Leaves are p = s of length b and store count(s) = |Ls|. All nodes are committed in an SMT keyed
by p (as bytes), yielding root count roote.

This permits:

• proving total activated identities N = count(ϵ) (empty prefix),

• deterministically mapping a global rank k ∈ [0, N) to a shard and local index using O(b) node
proofs.
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3.6 SpentProofSMT

Definition 8 (SpentProofSMT). An SMT mapping jap hash 7→ 1 if consumed, else absent. Root
at state e is spent roote.

3.7 Emission receipt

Definition 9 (Emission Receipt). An emission event at index e produces a receipt:

rcpte = H("DJTE.RCPT"∥e∥winner id∥amounte∥jap hash)

and includes:

• proofs used for winner selection,

• proofs that jap hash was unspent before and marked spent after,

• supply update evidence,

• (optional) compact witnesses (multi-proofs) enabling efficient batch verification.

4 Policy and Emission Schedule

4.1 Fixed supply cap and halving epochs

Let Stotal be total supply allocated to this DLV (e.g., 80 · 109 units). DJTE emits from remaining
supply; it never creates new units.

We define a halving schedule as a policy tuple:

Π = (Stotal, b, E,M0, r0)

where:

• b is shard depth,

• E = 16 is number of epochs,

• M0 is max emissions in epoch 0,

• r0 is per-emission amount in epoch 0,

• epoch i has (Mi, ri) = (2iM0, ⌊r0/2i⌋).

To enforce a strict cap independent of join count, the protocol enforces:

amounte = min
(
repoch(e), remaininge

)
,

and if remaininge = 0 then amounte = 0 and the DLV emits nothing thereafter.

Lemma 1 (Supply upper bound). For all reachable states, total distributed supply is ≤ Stotal.

Proof. remaining starts at Stotal and is updated by remaininge+1 = remaininge − amounte with
amounte ≤ remaininge. Thus remaining never goes negative and distributed amount never exceeds
Stotal.
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5 Protocol Algorithms (Deterministic)

5.1 Activation: incorporating a Join Activation Proof

When a verifier accepts a JAP as valid (per DSM spend-gate rules), it updates three structures
deterministically:

1. SAA append: let s = Shard(id) and append leaf Ls[ns] = H("DJTE.ACTIVE"∥id).

2. ShardCountSMT update: increment count(s) and all ancestors up to root ϵ.

3. (Optional) audit index: store the JAP object by content address for retrieval; this is not a
consensus primitive.

All updates are committed in the next DLV state by changing acc roote,s and count roote accord-
ingly.

5.2 Winner selection at emission index e

Winner selection is deterministic and proof-carrying.

Inputs. Current source DLV state De and a consumed JAP with hash jap hash.

Step 1: derive seed.
R0 = H("DJTE.SEED"∥dlv tip∥e∥jap hash).

Step 2: obtain total eligible count. Verifier requires a proof from ShardCountSMT that:

N = count(ϵ).

If N = 0, winner selection is undefined and the emission transition must set amounte = 0.

Step 3: sample global rank uniformly. Compute:

k = UniformIndex(R0, N) ∈ {0, . . . , N − 1}.

Step 4: map global rank to shard and local index. Using count proofs along the prefix
tree:

• Start at prefix p = ϵ and rank k.

• For each depth d = 0..b− 1, query children p0 and p1 counts with SMT proofs.

• If k < count(p0), set p← p0; else set k ← k − count(p0) and p← p1.

• After b steps, p is shard s and remaining k is local index i within shard s.

Step 5: prove winner identity at (s, i). Verifier requires an inclusion proof from SAA for shard
s that leaf at index i is:

Ls[i] = H("DJTE.ACTIVE"∥winner id).

Winner is winner id.
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5.3 Consuming a JAP exactly once (SpentProofSMT)

To advance from De to De+1 with a nonzero emission, the transition must carry:

• Non-membership proof under spent roote that jap hash is absent.

• Membership proof under spent roote+1 that jap hash 7→ 1 is present.

5.4 State transition validity

A candidate next state De+1 is valid iff all hold:

1. Index increment: enext = e+ 1.

2. Spent update correctness: spent roote+1 is spent roote plus insertion of jap hash, and proofs
verify.

3. Winner selection correctness: the rank derivation and shard mapping proofs verify under
count roote, and SAA inclusion verifies under acc roote,s.

4. Supply update: remaininge+1 = remaininge − amounte with amounte ≤ remaininge.

5. Receipt binding: rcpte matches the provided values and proofs.

6 Bootstrap Regime: Very Few Activated Identities

6.1 Correctness when N is small

At system start, the global eligible population is small:

• If N = 0, emission must be a no-op (amounte = 0). Any nonzero winner claim is invalid because
it cannot supply valid rank mapping and inclusion proofs.

• If N > 0 but many shards are empty, the ShardCountSMT descent routes ranks only into
nonempty subtrees; empty shards get exactly zero probability mass, which is correct for global-
uniform sampling over individuals.

6.2 History, balances, and user experience

Because receipts are proof-carrying, a DSM client can update history/balances deterministically
after local verification. There is no “ask the network” step. Early bootstrap does not require special
coordination; it only requires strict-fail handling of N = 0.

7 Fairness Under Shard Imbalance

7.1 What “fair” means in DJTE

DJTE fairness target is global uniformity over activated identities. If shard s contains |Ls|
identities and total N =

∑
s |Ls|:

Pr[winner in shard s] =
|Ls|
N

.

This is exactly “each identity has probability 1/N .”
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7.2 Imbalance is expected and not unfair

Shard skew is not unfair; it is correct under global-uniform semantics. “Equalizing shards” would
violate uniformity over individuals.

7.3 The real fairness risk: shard targeting and identity grinding

Risk comes from malleable identity creation. Mitigation is DSM spend-gate and device/identity
binding, making grinding expensive. DJTE itself remains correct; the spend-gate provides the
anti-grind economics.

8 Rigorous Guarantees

8.1 Determinism

Theorem 1 (Determinism). Given the same starting state De and the same consumed jap hash,
any verifier computes the same winner and the same next state De+1.

Proof. All steps are fixed functions of committed roots and domain-separated hashes: R0, exact-
uniform sampling, deterministic rank-to-shard descent, deterministic inclusion proofs, deterministic
SMT updates. No timestamps, no nondeterministic branching.

8.2 Single-use of Join Activation Proofs

Theorem 2 (No double-consumption). No JAP hash can be consumed in two distinct valid emis-
sion transitions descending from the same prior state.

Proof. A valid transition requires non-membership of jap hash under spent roote. After consump-
tion, spent roote+1 includes it permanently. Any later attempt fails the required non-membership
proof.

8.3 Global uniformity from sharded storage

Definition 10 (Global activated multiset). Let the global activated list be the concatenation of
shard lists in lexicographic shard order:

G = Ls0∥Ls1∥ · · · ∥Ls
2b−1

, N = |G| =
∑
s

|Ls|.

Lemma 2 (Rank mapping correctness). Given correct ShardCountSMT counts, the descent maps
each k ∈ [0, N) to exactly one (s, i) such that G[k] = Ls[i].

Proof. At each prefix p, left subtree size is count(p0) and right subtree size is count(p1). The
descent preserves rank by subtracting count(p0) when crossing right. After b steps, the selected
shard and residual rank uniquely identify G[k].

Theorem 3 (Global uniformity). If k is uniform in {0, . . . , N −1}, then DJTE selects a uniformly
random element of G.

Proof. By Lemma, the algorithm returns G[k]. Uniform k implies uniform selection over positions
of G.

11



9 Proof Size, Verification Cost, and Why It Does Not Blow Up

9.1 Per-emission proof components

A receipt contains:

• Spent non-membership under spent roote and membership under spent roote+1.

• Count descent openings (conceptually O(b)).

• SAA inclusion proof at index (s, i).

Proof size is independent of N , scaling as:

O(log(SMT depth)) +O(b) +O(log |Ls|).

9.2 Multi-proofs and witness compression

Production implementations must pack count openings as multi-proofs, eliminating repeated sib-
lings/ancestors. Formally, a multiproof for a set of queried nodes under one root can be represented
as:

• the set of revealed node values,

• the minimal set of sibling hashes required to recompute the root.

This yields one compact witness for the entire descent path rather than O(b) independent witnesses.

9.3 Batch verification and caching

Devices can batch-verify receipts and cache ShardCountSMT node values for prefixes, since they
only change when new activations occur under those subtrees. This makes “frequent emissions”
operationally cheap: verification is dominated by a small number of hash recomputations and a
bounded set of proof checks.

9.4 Receipt growth vs bounded single-receipt cost

History may grow large, but one receipt remains bounded/logarithmic to verify. DSM can addi-
tionally support policy-controlled pruning where raw receipts are discarded after their effects are
incorporated, while retaining committed roots (audit preferences determine how much to keep).

10 Why Random Walks Do Not Replace Shard Descent

10.1 The O(b) descent cost is information-theoretically minimal

Theorem 4 (Shard choice lower bound). Any procedure that selects one shard among 2b shards
requires Ω(b) bits of decision information.

Proof. Distinguishing 2b outcomes requires at least b bits of information.
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10.2 Random-walk selection breaks proof-carrying equivalence

Random walks require a step policy and mixing guarantees; exact global-uniform equivalence is
not proof-carrying without additional heavy machinery. In particular, “random walk until mixed”
introduces:

• an implicit time/iteration parameter (a policy knob),

• a stationary-distribution proof burden,

• bias if mixing is insufficient or adversarially structured.

DJTE therefore rejects random-walk selection as a replacement for rank descent.

11 Contact-Gated Inboxes and Precommitment: Why Meaningful
Spam is Hard

11.1 Precommitment constraints

DSM transitions are not arbitrary messages. In DSM, a valid incoming object is constrained by
precommitted structure:

• A receiver’s relationship-specific straight hash chain evolves only by valid transitions that match
expected preimage structure and known commitment context.

• Random bytes cannot be “appended” to a precommitted chain: verification fails immediately
under strict-fail rules.

• Many message classes require binding to prior commitments (known chain tips, expected indices,
prior receipts, or policy anchors), defeating generic garbage injection.

Definition 11 (Relevance predicate). Let Rel(obj, ctx) ∈ {0, 1} be a deterministic predicate that
checks whether an object references the receiver’s expected commitment context (e.g., known tips/indices/policy
anchors for that relationship). Objects with Rel = 0 are rejected without deep proof evaluation.

Claim 1 (Precommitment excludes arbitrary spam early). For an attacker lacking the receiver’s
commitment context, the probability that a random object satisfies Rel(obj, ctx) = 1 is negligible
under standard hash binding assumptions.

11.2 Contact gating (relationship-specific acceptance)

DSM’s operational model is relationship-specific:

• Devices accept and process inbox objects only for relationships/contacts they have established.

• A device can be online without syncing or processing any particular contact’s inbox stream.

• A device can reject or block a contact and thereby stop ingesting their objects entirely, without
impacting other relationships or global correctness.

Definition 12 (Contact gating). Let Allow(sender, receiver) be a deterministic predicate derived
from the receiver’s local contact set. Inbox processing for a sender is performed only if Allow = 1.

Lemma 3 (Victim opt-out kills per-contact flooding). If a victim sets Allow(attacker, victim) = 0,
then attacker-originated objects are not processed by the victim regardless of the victim being online.

Proof. By definition of contact gating, inbox processing does not run for disallowed contacts; there-
fore no per-contact processing cost is incurred.

13



11.3 No global mempool externality

Unlike blockchain systems with global mempools, DSM does not expose a single shared global queue
where anyone can force everyone to compete for inclusion. DJTE receipts are proof-carrying; devices
do not need global ordering, and storage nodes do not impose a global fee market. This structurally
removes the classic “spam the mempool to grief everyone” channel.

11.4 “You can’t send zero” and meaninglessness filtering

DSM can enforce that meaningless operations are not valid transitions:

• If an operation has zero-value effect or does not advance required commitments, it is invalid and
rejected.

• Because debit rules and acceptance are tied to state-advancing transitions, “spam” that does
nothing cannot be represented as an accepted object and therefore cannot impose systemic cost.

11.5 Offline bilateral transfers

Offline bilateral transfers (e.g., Bluetooth) are inherently resistant to network-style spam:

• physical proximity is required,

• both parties must consent and validate,

• there is no global broadcast surface to flood.

Therefore, the high-risk spam surface is primarily remote valid traffic, not local bilateral exchange.

12 Deterministic Credit Bundles: Economic Rate Limiting With-
out Time

12.1 Motivation

Even though DSM’s structure already minimizes meaningful spam vectors, credit bundles add a
deterministic economic backstop against valid high-volume traffic aimed at storage/relay capacity.
Importantly, this is sender-only: victims cannot have credits drained by receiving traffic.

12.2 Credit bundle policy (protocol-level constant)

Definition 13 (Credit Bundle Policy). A CPTA-anchored policy object Πcred defines:

Πcred = (Cbundle, DebitRule, RefillRule)

where Cbundle is a globally verifiable protocol-level constant (baseline Cbundle = 1000), with no time
windows and no storage-node discretion.

12.3 Credit counter in identity state

Definition 14 (Credit Counter). Each identity maintains credits(id) ∈ N inside its deterministic
committed state.
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12.4 Debit rule (sender-pays)

Definition 15 (DebitRule: accepted state-advancing transitions). A transition authored by id
debits exactly one credit iff:

• it is sender-authored,

• it verifies and is accepted,

• it advances the sender’s straight hash chain tip (Definition 1).

Inbound receipts/emissions, malformed objects, duplicates, replays, and non-advancing objects debit
zero.

Lemma 4 (No victim credit drain). An adversary cannot reduce victim credits via inbox flooding.

Proof. Credits debit only on sender-authored accepted state-advancing transitions. Inbox objects
do not debit. Therefore victim credits cannot be drained remotely.

12.5 Refill rule (spend-gate top-up)

Definition 16 (RefillRule). A refill is a deterministic sender-authored transition that includes
proof of satisfying spend-gate/refill conditions and sets credits(id) := Cbundle. If credits = 0, any
further sender-authored state-advancing transition is invalid unless it is a refill.

12.6 Why Cbundle = 1000 is the correct baseline

DSM needs a non-annoying bundle that still makes sustained valid flooding expensive, without
time-based throttles. 1000 is the correct baseline because:

• It is high enough that typical humans essentially never notice it (normal usage rarely hits 1000
state-advancing sends between refills).

• It is low enough that valid sustained flooding forces frequent refills, converting throughput abuse
into a direct economic burn.

• Heavy integrators (exchanges/apps) can deterministically automate refill transitions; this is op-
erationally simple because there is no monthly schedule and no time window semantics.

• It is enforceable at protocol level: storage nodes cannot “grant someone a million” because
credits are checked by verifiers, not by storage nodes.

Thus, the protocol-level answer is: start at 1000 credits per bundle. Tune later only via policy
anchors, but always as globally verifiable constants.

12.7 What would a spammer gain?

In DSM, spamming does not buy consensus influence (there is none), does not buy global ordering
advantage, and does not force victims to process data (contact gating). The only plausible “gain”
is localized resource pressure on storage/relay capacity. Credit bundles (plus cheap gating) directly
price that behavior, while precommitment/contact constraints already limit its reach.
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13 CPU/Parsing DoS: Deterministic Staged Verification and Bounded
Work

13.1 Staged verification (cheap-first, strict-fail)

Clients and storage nodes apply deterministic staged verification:

1. Structural gate: protobuf decode, envelope version, size bounds, required fields.

2. Content-address gate: declared hash matches bytes.

3. Relevance gate: Rel(obj, ctx) = 1 (precommitment-bound).

4. Contact gate: Allow(sender, receiver) = 1.

5. Full proof verification only after gates pass.

This ensures invalid floods are rejected cheaply and do not create systemic externalities.

13.2 Deterministic bounded inbox processing (no time)

Definition 17 (Inbox processing bound). A device processes at most K candidate objects per
inbox-check action; remaining objects are deferred. K is a deterministic local constant (UI/engine
policy), not a time-based throttle.

Lemma 5 (Bounded worst-case per-check work). Under bounded inbox processing, a single inbox-
check action performs O(K) parsing and at most O(K) deep verifications, regardless of how many
objects exist remotely.

Proof. Immediate from the definition: the device selects at most K candidates, applies cheap gates,
and only then performs deep verification for survivors. Objects beyond K are not touched in that
action.

14 Fork behavior and deterministic convergence

Definition 18 (Valid DLV state DAG). States are nodes; an edge De → De+1 exists if the transition
verifies. Forks can exist.

Definition 19 (Canonical tip rule). Choose the tip maximizing e; break ties by lexicographically
smallest dlv tip.

Theorem 5 (Eventual convergence under shared view). If two verifiers have the same set of valid
states, they compute the same canonical tip.

Proof. The rule is a pure function of the set.

15 Contrast With Blockchain-Style Systems

15.1 Global queues vs relationship-specific verification

Blockchains expose global mempools and consensus ordering. Any actor can submit transactions
that impose validation/bandwidth costs on many participants, even if ultimately not included.
DSM avoids this by:
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• eliminating consensus and global ordering,

• making finality local (device-verifiable),

• pushing relevance to relationship-specific precommitments and contact gating.

15.2 Fee markets and time dependence vs deterministic policy

Blockchain congestion control is often a fee market coupled to time/blocks. DSM forbids time
dependence and uses deterministic policy anchors (CPTA) plus proof-carrying validation. Credit
bundles (if enabled) are deterministic and sender-funded without time windows. There is no block
cadence, no timestamp games, and no “pay to get into the next block” semantics.

15.3 Spam incentives and griefing

In blockchain systems, spam can be used for censorship-by-congestion, MEV externalities, and
mempool griefing. In DSM:

• there is no global mempool to congest,

• inbox processing is optional per contact,

• irrelevant objects fail precommitment constraints,

• sender-pays credits make sustained valid spam economically expensive,

• victims can remain online while refusing to sync hostile relationships.

15.4 What DSM “buys” by being strict

DSM’s strict constraints buy guarantees that are hard to obtain in blockchain-style systems:

• offline-verifiable correctness without global agreement,

• minimal global externalities from arbitrary third parties,

• deterministic convergence once the same set of proofs is observed,

• bounded verification costs per object and per inbox-check action.

16 Implementation Mapping to DSM (Operational Rigor)

16.1 Wire format and determinism discipline

All DJTE objects use DSM envelopes with protobuf-only serialization. No timestamps, no nonde-
terministic fields, no reliance on transport ordering.
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16.2 Verification pipeline (strict-fail)

A DSM device verifying a DJTE transition must:

1. Apply staged gates (structural, hash, relevance, contact).

2. Verify DJTE proofs against spent roote, count roote, and acc roote,s.

3. Recompute R0, compute uniform k, derive (s, i), verify SAA inclusion.

4. Verify supply decrement and receipt binding.

5. Enforce any protocol-level credit bundle rule for sender-authored state-advancing transitions.

6. Accept iff all checks pass.

16.3 Storage nodes as dumb mirrors

Storage nodes store and relay objects by content address, apply cheap structural gates, and do not
decide correctness.

16.4 b0x (inbox) dissemination model

Devices check b0x when online, selectively per contact. They validate locally and update his-
tory/balances deterministically. Finality does not require going online.

17 Additional Notes and Practical Parameter Guidance

17.1 Choosing shard depth b

Choose b ∈ [16, 20] to fix dispersion and keep descent bounded; compress witnesses via multi-proofs.
The engineering goal is not to eliminate b (impossible without losing information), but to keep b
fixed and compress its proof witnesses.

17.2 DoS considerations (full summary)

DJTE/DSM attack surface is minimized because:

• Random data cannot bind to precommitted hash chains and is rejected.

• Contact gating lets users ignore/block relationships without affecting other operations.

• There is no consensus/mempool externality, so “spamming the network” is not globally ampli-
fying.

• Optional credit bundles impose an economic burn on accepted sender-authored state-advancing
traffic.

• Staged verification ensures invalid floods are cheaply rejected.

• Offline bilateral transfers are physically consented and naturally rate-limited.
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17.3 What DJTE is not

DJTE is not consensus. Forks can exist until devices learn more states; convergence is deterministic
once the same set is known. DJTE is not a social oracle; it is a mechanical fairness mechanism
under a Sybil-resistant spend-gate.

18 Conclusion

DJTE provides deterministic, proof-carrying, join-triggered emissions for DSM with global-uniform
sampling over activated identities while using sharded storage and no global roster enumeration.
Shard descent is O(b) and information-theoretically minimal, with random-walk alternatives re-
jected for bias and non-proof-carrying equivalence. Beyond emissions, DSM’s precommitment
structure and relationship-specific contact gating make meaningful spam difficult: arbitrary data
cannot bind to committed chains, and users can selectively ignore or block contacts without affect-
ing other relationships or global correctness. Optional deterministic credit bundles add a sender-
funded economic backstop against valid high-volume traffic without time windows or node discre-
tion. Compared to blockchain systems, DSM avoids global mempool externalities, consensus-driven
congestion, and time-based fee markets, achieving strong guarantees via proof-carrying objects and
local verification.

A Appendix A: Minimality vs “Linear b” concerns

The shard descent cost being linear in b is not a design flaw; it is the necessary cost of selecting
among 2b possibilities with proof-carrying determinism. You can compress witnesses (multi-proofs),
batch verification, and cache node values, but you cannot eliminate the information requirement
without changing the semantics (and breaking global uniformity equivalence).

B Appendix B: Summary of what end users do

End users:

• unlock spend-gate once (wallet handles proofs),

• optionally top up credits when they run out (wallet can automate),

• accept/verify receipts locally (automatic),

• block/ignore contacts (UI-level control).

End users do not run ordering, consensus, shards, committees, or manual cryptographic procedures.
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